The Architectural Diversity of Metal Oxide Nanostructures:

An Opportunity for the Rational Optimization of Group II Cation Based Batteries.

Esther S. Takeuchi, Kenneth J. Takeuchi, Amy C. Marschilok

esther.takeuchi@stonybrook.edu, kenneth.takeuchi.1@stonybrook.edu, amy.marschilok@stonybrook.edu

Impact on DOE OE Energy Storage Mission

This project targets some of the unique needs of large scale power storage:

- 1) reduced cost
- 2) low environmental impact
- 3) scalability
- 4) reversibility
- 5) capacity retention

Strategy

Utilize earth abundant, low cost elements with minimal environmental impact as battery materials.

Exploit magnesium due to air stability and ~1,000X higher natural abundance than lithium and ~5,000X higher abundance than lead.

Cathode materials feature Mn, Fe or V metal centers.

Results

Synthesis and Characterization of Mg_xMnO_y

Precipitation Ion-Exchange

Synthesis

Mg_xMnO_y was prepared by a two-step **scalable process** where the first step was a precipitation reaction followed by ion-exchange.

Structure

 Mg_xMnO_y has a layered structure of edge sharing MnO_6 octahedra, where Mg^{2+} cations are found between the layers.

Results Scanning Electron Microscopy (SEM) Mg_xMnOy exhibits a platelet morphology. **ICP-OES** was used to $Mg/Mn = 0.23 \pm 0.07.$ quantify the elemental composition of > 40 samples. **Electrochemical Testing** of Mg_vMnO_v Li⁺ electrolyte Cyclic voltammetry of three-electrode cell Mg_xMnO_v showed electrochemical reversible behavior Voltage (V) vs. Li/Li⁺ between 2.8 V and 3.8 V. Li⁺ electrolyte Discharge curve Discharge of Mg_xMnO_v results in a sloping profile, with ~160 mAh/g delivered above 2 V. Discharge capacity (mAh/g) Cycle life of cells at C/20 Li⁺ electrolyte The material showed initial capacity of 160 mAh/g with good capacity retention at 120 mAh/g Cycle no. Mg²⁺ electrolyte Cyclic voltammetry in Mg²⁺ electrolyte Electrochemical reversibility in Mg²⁺ **based electrolyte** was observed. Voltage (V) vs. Ag/Ag+

Results **Synthesis and Characterization** of Mg_xV₂O_y **Synthesis** Two-Step Synthesis Mg_xV₂O_v was prepared by a two-step **scalable** Sol-Gel Reaction process where the first step was a sol-gel reaction followed by ion-exchange. Ion-Exchange **Scanning Electron Microscopy (SEM)** $Mg_xV_2O_y$ exhibits a fibrous morphology. **ICP-OES** was used to $Mg/V = 0.12 \pm 0.01$. quantify the elemental composition of > 12 samples. **Electrochemical Testing** of Mg_xV₂O_v Cyclic voltammetry of Li⁺ electrolyte three-electrode cell Mg_xV₂O_v showed electrochemical reversible behavior between 2.0 and Voltage (V) vs. Li/Li⁺ 4.0V Li⁺ electrolyte Discharge curve Discharge of Mg_xV₂O_v results in a sloping profile, with 205 mAh/g Discharge capacity (mAh/g) Cycle life of cells at C/12 Li⁺ electrolyte The material showed initial capacity of 205 mAh/g with **good** capacity retention.

Cycle no.

Summary

Successful **scalable aqueous based** syntheses of pure Mg_xVO_v and pure Mg_xMnO_v .

Observed **electrochemical reversibility** in lithium electrolytes.

Delivered capacities > **200 mAh/g** (Mg_xVO_y) and > 150 mAh/g (Mg_xMnO_y).

High capacity retention observed in lithium electrochemical cells.

Observed electrochemical reversibility in magnesium electrolytes.

Student Participants

Graduate

David Bock PhD - Chemistry

Chia-Ying Lee PhD - Chem. Eng. (graduated Aug 2012)

Shu Han Lee PhD - Chem. Eng. Chris Milleville PhD - Chemistry

Corey Schaffer MS - Chem. Eng. (graduated Dec 2011)
Shali Yau PhD - Chemistry (graduated Dec 2011)

Undergraduate

Jeffery Marvin - Chemistry Sheree Chen – Chemistry

Acknowledgment

Sandia National Laboratories

The authors gratefully acknowledge the support of the Department of Energy/Office of Electricity's Energy Storage Program.